Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 283: 127702, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552381

RESUMO

Enterococci comprise a group of lactic acid bacteria (LAB) with considerable potential to serve as food fermentation microorganisms. Unfortunately, enterococci have received a lot of negative attention, due to the occurrence of pathogenic and multidrug resistant strains. In this study, we used genomics to select safe candidates among the forty-four studied enterococcal isolates. The genomes of the forty-four strains were fully sequenced and assessed for presence of virulence and antibiotic resistance genes. Nineteen isolates belonging to the species Enterococcus lactis, Enterococcus faecium, Enterococcus durans, and Enterococcus thailandicus, were deemed safe from the genome analysis. The presence of secondary metabolite gene clusters for bacteriocins was assessed, and twelve candidates were found to secrete antimicrobial compounds effective against Listeria monocytogenes isolated from cheese and Staphylococcus aureus. Physiological characterization revealed nineteen industrial potentials; all strains grew well at 42 °C and acidified 1.5 hours faster than their mesophilic counterpart Lactococcus lactis, with which they share metabolism and flavor forming ability. We conclude that a large fraction of the examined enterococci were safe and could serve as excellent food fermentation microorganisms with inherent bioprotective abilities.


Assuntos
Bacteriocinas , Enterococcus faecium , Fermentação , Enterococcus/genética , Enterococcus faecium/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Genômica
2.
Front Bioeng Biotechnol ; 12: 1348184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415189

RESUMO

The demand for alternative sources of food proteins is increasing due to the limitations and challenges associated with conventional food production. Advances in biotechnology have enabled the production of proteins using microorganisms, thus prompting the exploration of attractive microbial hosts capable of producing functional proteins in high titers. Corynebacterium glutamicum is widely used in industry for the production of amino acids and has many advantages as a host organism for recombinant protein production. However, its performance in this area is limited by low yields of target proteins and high levels of native protein secretion. Despite representing a challenge for heterologous protein production, the C. glutamicum secretome has not been fully characterized. In this study, state-of-the-art mass spectrometry-based proteomics was used to identify and analyze the proteins secreted by C. glutamicum. Both the wild-type strain and a strain that produced and secreted a recombinant ß-lactoglobulin protein were analyzed. A total of 427 proteins were identified in the culture supernatants, with 148 predicted to possess a secretion signal peptide. MS-based proteomics on the secretome enabled a comprehensive characterization and quantification (based on abundance) of the secreted proteins through label-free quantification (LFQ). The top 12 most abundant proteins accounted for almost 80% of the secretome. These are uncharacterized proteins of unknown function, resuscitation promoting factors, protein PS1, Porin B, ABC-type transporter protein and hypothetical membrane protein. The data can be leveraged for protein production by, e.g., utilizing the signal peptides of the most abundant proteins to improve secretion of heterologous proteins. In addition, secretory stress can potentially be alleviated by inactivating non-essential secreted proteins. Here we provide targets by identifying the most abundant, secreted proteins of which majority are of unknown function. The data from this study can thus provide valuable insight for researchers looking to improve protein secretion and optimize C. glutamicum as a host for secretory protein production.

3.
Front Bioeng Biotechnol ; 11: 1101232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726744

RESUMO

3-Hydroxypropionic acid (3-HP) is a valuable platform chemical that is used as a precursor for several higher value-added chemical products. There is an increased interest in development of cell factories as a means for the synthesis of 3-HP and various other platform chemicals. For more than a decade, concentrated effort has been invested by the scientific community towards developing bio-based approaches for the production of 3-HP using primarily Escherichia coli and Klebsiella pneumoniae as production hosts. These hosts however might not be optimal for applications in e.g., food industry due primarily to endotoxin production and the pathogenic origin of particularly the K. pneumoniae. We have previously demonstrated that the generally recognized as safe organism Bacillus subtilis can be engineered to produce 3-HP using glycerol, an abundant by-product of the biodiesel industry, as substrate. For commercial exploitation, there is a need to substantially increase the titer. In the present study, we optimized the bioprocess conditions and further engineered the B. subtilis 3-HP production strain. Thereby, using glycerol as substrate, we were able to improve 3-HP production in a 1-L bioreactor to a final titer of 22.9 g/L 3-HP.

4.
Front Microbiol ; 13: 1091964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713227

RESUMO

Several species in the genus Legionella are known to cause an acute pneumonia when the aerosols containing the bacteria from man-made water systems are inhaled. The disease is usually caused by Legionella pneumophila, but other species have been implicated in the infection. The disease is frequently manifested as an outbreak, which means several people are affected when exposed to the common source of Legionella contamination. Therefor environmental surveillance which includes isolation and identification of Legionella is performed routinely. However, usually no molecular or genome-based methods are employed in further characterization of the isolates during routine environmental monitoring. During several years of such monitoring, isolates from different geographical locations were collected and 39 of them were sequenced by hybrid de novo approach utilizing short and long sequencing reads. In addition, the isolates were typed by standard culture and MALDI-TOF method. The sequencing reads were assembled and annotated to produce high-quality genomes. By employing discriminatory genome typing, four potential new species in the Legionella genus were identified, which are yet to be biochemically and morphologically characterized. Moreover, functional annotations concerning virulence and antimicrobial resistance were performed on the sequenced genomes. The study contributes to the knowledge on little-known non-pneumophila species present in man-made water systems and establishes support for future genetic relatedness studies as well as understanding of their pathogenic potential.

5.
Microb Cell Fact ; 20(1): 187, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565367

RESUMO

BACKGROUND: The objective of this work was to engineer Deinococcus radiodurans R1 as a microbial cell factory for the production of pinene, a monoterpene molecule prominently used for the production of fragrances, pharmaceutical products, and jet engine biofuels. Our objective was to produce pinene from glycerol, an abundant by-product of various industries. RESULTS: To enable pinene production in D. radiodurans, we expressed the pinene synthase from Abies grandis, the geranyl pyrophosphate (GPP) synthase from Escherichia coli, and overexpressed the native 1-deoxy-D-xylulose 5-phosphate synthase. Further, we disrupted the deinoxanthin pathway competing for the substrate GPP by either inactivating the gene dr0862, encoding phytoene synthase, or substituting the native GPP synthase with that of E. coli. These manipulations resulted in a D. radiodurans strain capable of producing 3.2 ± 0.2 mg/L pinene in a minimal medium supplemented with glycerol, with a yield of 0.13 ± 0.04 mg/g glycerol in shake flask cultures. Additionally, our results indicated a higher tolerance of D. radiodurans towards pinene as compared to E. coli. CONCLUSIONS: In this study, we successfully engineered the extremophile bacterium D. radiodurans to produce pinene. This is the first study demonstrating the use of D. radiodurans as a cell factory for the production of terpenoid molecules. Besides, its high resistance to pinene makes D. radiodurans a suitable host for further engineering efforts to increase pinene titer as well as a candidate for the production of the other terpenoid molecules.


Assuntos
Deinococcus/metabolismo , Glicerol/metabolismo , Engenharia Metabólica/métodos , Monoterpenos/análise , Monoterpenos/metabolismo , Abies/enzimologia , Abies/genética , Biocombustíveis , Deinococcus/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Monoterpenos/classificação
6.
Sci Rep ; 11(1): 12619, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135368

RESUMO

With multidrug-resistant bacterial pathogens on the rise, there is a strong research focus on alternative antibacterial treatments that could replace or complement classical antibiotics. Metallic nanoparticles, and in particular silver nanoparticles (AgNPs), have been shown to kill bacterial biofilms effectively, but their chemical synthesis often involves environmentally unfriendly by-products. Recent studies have shown that microbial and plant extracts can be used for the environmentally friendly synthesis of AgNPs. Herein we report a procedure for producing AgNPs using a putative Cedecea sp. strain isolated from soil. The isolated bacterial strain showed a remarkable potential for producing spherical, crystalline and stable AgNPs characterized by UV-visible spectroscopy, transmission electron microscopy, dynamic light scattering, and Fourier transform infrared spectroscopy. The concentration of produced nanoparticles was 1.31 µg/µl with a negative surface charge of - 15.3 mV and nanoparticles size ranging from 10-40 nm. The AgNPs was tested against four pathogenic microorganisms S. epidermidis, S. aureus, E. coli and P. aeruginosa. The nanoparticles exhibited strong minimum inhibitory concentration (MIC) values of 12.5 and 6.25 µg/µl and minimum bactericidal concentration (MBC) values of 12.5 and 12.5 µg/mL against E. coli and P. aeruginosa, respectively. One distinguishing feature of AgNPs produced by Cedecea sp. extracts is their extreme stability. Inductively coupled plasma mass spectrometry and thermogravimetric analysis demonstrated that the produced AgNPs are stable for periods exceeding one year. This means that their strong antibacterial effects, demonstrated against E. coli and P. aeruginosa biofilms, can be expected to persist during extended periods.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Enterobacteriaceae/metabolismo , Nanopartículas Metálicas/química , Prata/farmacologia , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Estabilidade de Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Química Verde , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Prata/química , Microbiologia do Solo , Espectrofotometria Atômica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia , Termogravimetria
7.
Front Microbiol ; 12: 657562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889145

RESUMO

Understanding phosphorylation-mediated regulation of metabolic enzymes, pathways, and cell phenotypes under metabolic shifts represents a major challenge. The kinases associated with most phosphorylation sites and the link between phosphorylation and enzyme activity remain unknown. In this study, we performed stable isotope labeling by amino acids in cell culture (SILAC)-based proteome and phosphoproteome analysis of Escherichia coli ΔyeaG, a strain lacking a poorly characterized serine/threonine kinase YeaG, to decipher kinase-substrate interactions and the effects on metabolic phenotype during shifts from glucose to malate. The starting point of our analysis was the identification of physiological conditions under which ΔyeaG exhibits a clear phenotype. By metabolic profiling, we discovered that ΔyeaG strain has a significantly shorter lag phase than the wild type during metabolic shift from glucose to malate. Under those conditions, our SILAC analysis revealed several proteins that were differentially phosphorylated in the ΔyeaG strain. By focusing on metabolic enzymes potentially involved in central carbon metabolism, we narrowed down our search for putative YeaG substrates and identified isocitrate lyase AceA as the direct substrate of YeaG. YeaG was capable of phosphorylating AceA in vitro only in the presence of malate, suggesting that this phosphorylation event is indeed relevant for glucose to malate shift. There is currently not enough evidence to firmly establish the exact mechanism of this newly observed regulatory phenomenon. However, our study clearly exemplifies the usefulness of SILAC-based approaches in identifying proteins kinase substrates, when applied in physiological conditions relevant for the activity of the protein kinase in question.

8.
FEBS Lett ; 594(15): 2339-2369, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32337704

RESUMO

Protein phosphorylation regulates a large variety of biological processes in all living cells. In pathogenic bacteria, the study of serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious diseases, from adherence to host cells to pathogen virulence, replication, and persistence. Mass spectrometry (MS)-based phosphoproteomics has provided global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite recent developments, a quantitative and dynamic view of phosphorylation events that occur during bacterial pathogenesis is currently lacking. Temporal, spatial, and subpopulation resolution of phosphorylation data is required to identify key regulatory nodes underlying bacterial pathogenesis. Herein, we discuss how technological improvements in sample handling, MS instrumentation, data processing, and machine learning should improve bacterial phosphoproteomic datasets and the information extracted from them. Such information is expected to significantly extend the current knowledge of Ser/Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately contribute to the design of novel strategies to combat bacterial infections.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Fosfoproteínas/metabolismo , Animais , Humanos , Fosforilação , Serina/metabolismo , Espectrometria de Massas em Tandem , Treonina/metabolismo , Tirosina/metabolismo
9.
Mol Biol Evol ; 37(6): 1667-1678, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061128

RESUMO

Bacilli can form dormant, highly resistant, and metabolically inactive spores to cope with extreme environmental challenges. In this study, we examined the evolutionary age of Bacillus subtilis sporulation genes using the approach known as genomic phylostratigraphy. We found that B. subtilis sporulation genes cluster in several groups that emerged at distant evolutionary time-points, suggesting that the sporulation process underwent several stages of expansion. Next, we asked whether such evolutionary stratification of the genome could be used to predict involvement in sporulation of presently uncharacterized genes (y-genes). We individually inactivated a representative sample of uncharacterized genes that arose during the same evolutionary periods as the known sporulation genes and tested the resulting strains for sporulation phenotypes. Sporulation was significantly affected in 16 out of 37 (43%) tested strains. In addition to expanding the knowledge base on B. subtilis sporulation, our findings suggest that evolutionary age could be used to help with genome mining.


Assuntos
Bacillus subtilis/fisiologia , Evolução Molecular , Genoma Bacteriano , Esporos Bacterianos , Fenótipo
10.
Artigo em Inglês | MEDLINE | ID: mdl-31179279

RESUMO

3-hydroxypropanoic acid (3-HP) is a valuable platform chemical with a high demand in the global market. 3-HP can be produced from various renewable resources. It is used as a precursor in industrial production of a number of chemicals, such as acrylic acid and its many derivatives. In its polymerized form, 3-HP can be used in bioplastic production. Several microbes naturally possess the biosynthetic pathways for production of 3-HP, and a number of these pathways have been introduced in some widely used cell factories, such as Escherichia coli and Saccharomyces cerevisiae. Latest advances in the field of metabolic engineering and synthetic biology have led to more efficient methods for bio-production of 3-HP. These include new approaches for introducing heterologous pathways, precise control of gene expression, rational enzyme engineering, redirecting the carbon flux based on in silico predictions using genome scale metabolic models, as well as optimizing fermentation conditions. Despite the fact that the production of 3-HP has been extensively explored in established industrially relevant cell factories, the current production processes have not yet reached the levels required for industrial exploitation. In this review, we explore the state of the art in 3-HP bio-production, comparing the yields and titers achieved in different microbial cell factories and we discuss possible methodologies that could make the final step toward industrially relevant cell factories.

11.
N Biotechnol ; 41: 34-45, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29221760

RESUMO

Human milk oligosaccharides (HMOs) constitute a unique family of bioactive lactose-based molecules present in human breast milk. HMOs are of major importance for infant health and development but also virtually absent from bovine milk used for infant formula. Among the HMOs, the fucosylated species are the most abundant. Transfucosylation catalysed by retaining α-l-fucosidases is a new route for manufacturing biomimetic HMOs. Seven α-l-fucosidases from glycosyl hydrolase family 29 were expressed, characterized in terms of substrate specificity and thermal stability, and shown to be able to catalyse transfucosylation. The α-l-1,3/4-fucosidase CpAfc2 from Clostridium perfringens efficiently catalysed the formation of the more complex human milk oligosaccharide structure lacto-N-fucopentaose II (LNFP II) using 3-fucosyllactose as fucosyl donor and lacto-N-tetraose as acceptor with a 39% yield. α-l-Fucosidases FgFCO1 from Fusarium graminearum and Mfuc5 from a soil metagenome were able to catalyse transfucosylation of lactose using citrus xyloglucan as fucosyl donor. FgFCO1 catalysed formation of 2'-fucosyllactose, whereas Mfuc5 catalysis mainly produced an unidentified, non-HMO fucosyllactose, reaching molar yields based on the donor substrate of 14% and 18%, respectively.


Assuntos
Fucose/metabolismo , Leite Humano/química , Oligossacarídeos/biossíntese , alfa-L-Fucosidase/metabolismo , Animais , Estabilidade Enzimática , Fucose/química , Glucanos/metabolismo , Glicosilação , Humanos , Hidrólise , Lactose/metabolismo , Modelos Moleculares , Especificidade por Substrato , Temperatura , Xilanos/metabolismo
12.
J Mol Biol ; 430(1): 27-32, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29138003

RESUMO

The main family of serine/threonine/tyrosine protein kinases present in eukarya was defined and described by Hanks et al. in 1988 (Science, 241, 42-52). It was initially believed that these kinases do not exist in bacteria, but extensive genome sequencing revealed their existence in many bacteria. For historical reasons, the term "eukaryotic-type kinases" propagated in the literature to describe bacterial members of this protein family. Here, we argue that this term should be abandoned as a misnomer, and we provide several lines of evidence to support this claim. Our comprehensive phylostratigraphic analysis suggests that Hanks-type kinases present in eukarya, bacteria and archaea all share a common evolutionary origin in the lineage leading to the last universal common ancestor (LUCA). We found no evidence to suggest substantial horizontal transfer of genes encoding Hanks-type kinases from eukarya to bacteria. Moreover, our systematic structural comparison suggests that bacterial Hanks-type kinases resemble their eukaryal counterparts very closely, while their structures appear to be dissimilar from other kinase families of bacterial origin. This indicates that a convergent evolution scenario, by which bacterial kinases could have evolved a kinase domain similar to that of eukaryal Hanks-type kinases, is not very likely. Overall, our results strongly support a monophyletic origin of all Hanks-type kinases, and we therefore propose that this term should be adopted as a universal name for this protein family.


Assuntos
Archaea/genética , Bactérias/genética , Eucariotos/genética , Proteínas Serina-Treonina Quinases/genética , Sequência de Aminoácidos , Evolução Molecular
13.
PLoS One ; 12(2): e0171585, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28158299

RESUMO

A sialidase (EC 3.2.1.18) from the non-pathogenic Trypanosoma rangeli, TrSA, has been shown to exert trans-sialidase activity after mutation of five specific amino acids in the active site (M96V, A98P, S120Y, G249Y, Q284P) to form the so-called TrSA5mut enzyme. By computational and hypothesis driven approaches additional mutations enhancing the trans-sialidase activity have been suggested. In the present work, we made a systematic combination of these mutations leading to seven new variants of the T. rangeli sialidase, having 6-16 targeted amino acid mutations. The resulting enzyme variants were analyzed via kinetics for their ability to carry out trans-sialidase reaction using CGMP and D-lactose as substrates. The sialidase variants with 15 and 16 mutations, respectively, exhibited significantly improved trans-sialidase activity for D-lactose sialylation. Our results corroborate, that computational studies of trans-glycosylation can be a valuable input in the design of novel trans-glycosidases, but also highlight the importance of experimental validation in order to assess the performance. In conclusion, two of the seven mutants displayed a dramatic switch in specificity from hydrolysis towards trans-sialylation and constitute the most potent trans-sialidase mutants of TrSA described in literature to date.


Assuntos
Glicoproteínas/metabolismo , Neuraminidase/metabolismo , Trypanosoma rangeli/enzimologia , Domínio Catalítico , Glicoproteínas/genética , Glicosilação , Cinética , Lactose/metabolismo , Mutação/genética , Neuraminidase/genética
14.
Appl Microbiol Biotechnol ; 101(9): 3605-3615, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28204884

RESUMO

We have previously shown that galacto-rhamnogalacturonan fibers can be enzymatically extracted from potato pulp and that these fibers have potential for exerting a prebiotic effect in piglets. The spore-forming Bacillus species are widely used as probiotics in feed supplements for pigs. In this study, we evaluated the option for further functionalizing Bacillus feed supplements by selecting strains possessing the enzymes required for extraction of the potentially prebiotic fibers. We established that it would require production and secretion of pectin lyase and/or polygalacturonase but no or limited secretion of galactanase and ß-galactosidase. By screening a library of 158 Bacillus species isolated from feces and soil, we demonstrated that especially strains of Bacillus amyloliquefaciens, Bacillus subtilis, and Bacillus mojavensis have the necessary enzyme profile and thus the capability to degrade polygalacturonan. Using an in vitro porcine gastrointestinal model system, we revealed that specifically strains of B. mojavensis were able to efficiently release galacto-rhamnogalacturonan from potato pulp under simulated gastrointestinal conditions. The work thus demonstrated the feasibility of producing prebiotic fibers via a feed containing Bacillus spores and potato pulp and identified candidates for future in vivo evaluation in piglets.


Assuntos
Bacillus/enzimologia , Bacillus/metabolismo , Suplementos Nutricionais , Pectinas/metabolismo , Prebióticos , Solanum tuberosum/metabolismo , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Modelos Biológicos , Microbiologia do Solo
15.
Artigo em Inglês | MEDLINE | ID: mdl-29376036

RESUMO

Protein lysine acetylation is recognized as an important reversible post translational modification in all domains of life. While its primary roles appear to reside in metabolic processes, lysine acetylation has also been implicated in regulating pathogenesis in bacteria. Several global lysine acetylome analyses have been carried out in various bacteria, but thus far there have been no reports of lysine acetylation taking place in the important human pathogen Vibrio cholerae. In this study, we analyzed the lysine acetylproteome of the human pathogen V. cholerae V52. By applying a combination of immuno-enrichment of acetylated peptides and high resolution mass spectrometry, we identified 3,402 acetylation sites on 1,240 proteins. Of the acetylated proteins, more than half were acetylated on two or more sites. As reported for other bacteria, we observed that many of the acetylated proteins were involved in metabolic and cellular processes and there was an over-representation of acetylated proteins involved in protein synthesis. Of interest, we demonstrated that many global transcription factors such as CRP, H-NS, IHF, Lrp and RpoN as well as transcription factors AphB, TcpP, and PhoB involved in direct regulation of virulence in V. cholerae were acetylated. In conclusion, this is the first global protein lysine acetylome analysis of V. cholerae and should constitute a valuable resource for in-depth studies of the impact of lysine acetylation in pathogenesis and other cellular processes.


Assuntos
Regulação Bacteriana da Expressão Gênica , Processamento de Proteína Pós-Traducional , Proteoma , Proteômica , Transcrição Gênica , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Acetilação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Humanos , Modelos Moleculares , Anotação de Sequência Molecular , Conformação Proteica , Proteômica/métodos , Vibrio cholerae/patogenicidade , Virulência , Fatores de Virulência
16.
PLoS One ; 11(7): e0158434, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27367145

RESUMO

Sialidases (3.2.1.18) may exhibit trans-sialidase activity to catalyze sialylation of lactose if the active site topology is congruent with that of the Trypanosoma cruzi trans-sialidase (EC 2.4.1.-). The present work was undertaken to test the hypothesis that a particular aromatic sandwich structure of two amino acids proximal to the active site of the T. cruzi trans-sialidase infers trans-sialidase activity. On this basis, four enzymes with putative trans-sialidase activity were identified through an iterative alignment from 2909 native sialidases available in GenBank, which were cloned and expressed in Escherichia coli. Of these, one enzyme, SialH, derived from Haemophilus parasuis had an aromatic sandwich structure on the protein surface facing the end of the catalytic site (Phe168; Trp366), and was indeed found to exhibit trans-sialidase activity. SialH catalyzed production of the human milk oligosaccharide 3'-sialyllactose as well as the novel trans-sialylation product 3-sialyllactose using casein glycomacropeptide as sialyl donor and lactose as acceptor. The findings corroborated that Tyr119 and Trp312 in the T. cruzi trans-sialidase are part of an aromatic sandwich structure that confers trans-sialylation activity for lactose sialylation. The in silico identification of trans-glycosidase activity by rational active site topology alignment thus proved to be a quick tool for selecting putative trans-sialidases amongst a large group of glycosyl hydrolases. The approach moreover provided data that help understand structure-function relations of trans-sialidases.


Assuntos
Biologia Computacional , Neuraminidase/metabolismo , Domínio Catalítico , Glicosilação , Haemophilus/enzimologia , Modelos Moleculares , Neuraminidase/química , Homologia de Sequência de Aminoácidos
17.
PLoS One ; 11(1): e0147438, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26800369

RESUMO

This paper describes the discovery of novel α-L-fucosidases and evaluation of their potential to catalyse the transglycosylation reaction leading to production of fucosylated human milk oligosaccharides. Seven novel α-L-fucosidase-encoding genes were identified by functional screening of a soil-derived metagenome library and expressed in E. coli as recombinant 6xHis-tagged proteins. All seven fucosidases belong to glycosyl hydrolase family 29 (GH 29). Six of the seven α-L-fucosidases were substrate-inhibited, moderately thermostable and most hydrolytically active in the pH range 6-7, when tested with para-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as the substrate. In contrast, one fucosidase (Mfuc6) exhibited a high pH optimum and an unusual sigmoidal kinetics towards pNP-Fuc substrate. When tested for trans-fucosylation activity using pNP-Fuc as donor, most of the enzymes were able to transfer fucose to pNP-Fuc (self-condensation) or to lactose. With the α-L-fucosidase from Thermotoga maritima and the metagenome-derived Mfuc5, different fucosyllactose variants including the principal fucosylated HMO 2'-fucosyllactose were synthesised in yields of up to ~6.4%. Mfuc5 was able to release fucose from xyloglucan and could also use it as a fucosyl-donor for synthesis of fucosyllactose. This is the first study describing the use of glycosyl hydrolases for the synthesis of genuine fucosylated human milk oligosaccharides.


Assuntos
Metagenoma/genética , Leite Humano/química , Oligossacarídeos/metabolismo , alfa-L-Fucosidase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fucose/metabolismo , Humanos
18.
N Biotechnol ; 33(1): 41-54, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26255130

RESUMO

Rhamnogalacturonan I (RGI) modifying enzymes catalyse the degradation of the RGI backbone and encompass enzymes specific for either the α1,2-bond linking galacturonic acid to rhamnose or the α1,4-bond linking rhamnose to galacturonic acid in the RGI backbone. The first microbial enzyme found to be able to catalyse the degradation of the RGI backbone, an endo-hydrolase (EC 3.2.1.171) derived from Aspergillus aculeatus, was discovered 25 years ago. Today the group of RGI modifying enzymes encompasses endo- and exo-hydrolases as well as lyases. The RGI hydrolases, EC 3.2.1.171-EC 3.2.1.174, have been described to be produced by Aspergillus spp. and Bacillus subtilis and are categorized in glycosyl hydrolase families 28 and 105. The RGI lyases, EC 4.2.2.23-EC 4.2.2.24, have been isolated from different fungi and bacterial species and are categorized in polysaccharide lyase families 4 and 11. This review brings together the available knowledge of the RGI modifying enzymes and provides a detailed overview of biocatalytic reaction characteristics, classification, structure-function traits, and analyses the protein properties of these enzymes by multiple sequence alignments in neighbour-joining phylogenetic trees. Some recently detected unique structural features and dependence of calcium for activity of some of these enzymes (notably the lyases) are discussed and newly published results regarding improvement of their thermostability by protein engineering are highlighted. Knowledge of these enzymes is important for understanding microbial plant cell wall degradation and for advancing enzymatic processing and biorefining of pectinaceous plant biomass.


Assuntos
Hidrolases/metabolismo , Liases/metabolismo , Pectinas/metabolismo , Pectinas/química , Engenharia de Proteínas
19.
Front Microbiol ; 6: 1313, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635773

RESUMO

Microbes with the capability to survive in the host tissue and efficiently subvert its innate immune responses can cause various health hazards. There is an inherent need to understand microbial infection patterns and mechanisms in order to develop efficient therapeutics. Microbial pathogens display host specificity through a complex network of molecular interactions that aid their survival and propagation. Co-infection states further lead to complications by increasing the microbial burden and risk factors. Quantitative proteomics based approaches and post-translational modification analysis can be efficiently applied to gain an insight into the molecular mechanisms involved. The measurement of the proteome and post-translationally modified proteome dynamics using mass spectrometry, results in a wide array of information, such as significant changes in protein expression, protein abundance, the modification status, the site occupancy level, interactors, functional significance of key players, potential drug targets, etc. This mini review discusses the potential of proteomics to investigate the involvement of post-translational modifications in bacterial pathogenesis and host-pathogen interactions.

20.
Glycobiology ; 25(12): 1350-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26306636

RESUMO

A mutant Trypanosoma rangeli sialidase, Tr7, expressed in Pichia pastoris, exhibits significant trans-sialidase activity, and has been used for analytical-scale production of sialylated human milk oligosaccharides. Mass spectrometry-based site-specific N-glycoprofiling of Tr7 showed that heterogeneous high-mannose type N-glycans were present at all the five potential N-linked glycosites. N-linked glycans in Tr7 were predominantly neutral oligosaccharides with compositions Man(8-16)GlcNA(c2), but also mono- and di-phosphorylated oligosaccharides in the forms of Man(9-15)P(1)GlcNA(c2) and Man(9-14)P(2)GlcNA(c2), respectively. Some phosphorylated N-linked glycans further contained an additional HexNAc, which has not previously been reported in P. pastoris-expressed proteins. We compiled a method pipeline that combined hydrophilic interaction liquid chromatography enrichment of glycopeptides, high accuracy mass spectrometry and automated interpretation of the mass spectra with in-house developed "MassAI" software, which proved efficient in glycan site microheterogeneity analysis. Functional analysis showed that the deglycosylated Tr7 retained more than 90% of both the sialidase and trans-sialidase activities relative to the glycosylated Tr7.


Assuntos
Mutação , Neuraminidase/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo , Trypanosoma rangeli/enzimologia , Glicosilação , Leite Humano/química , Neuraminidase/química , Neuraminidase/genética , Pichia/genética , Pichia/metabolismo , Polissacarídeos/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes , Trypanosoma rangeli/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...